T-type Ca++ CP α1H (P492) polyclonal antibody

Catalog: BCP01683

Host:

Rabbit

Reactivity: Human, Mouse, Rat

BackGround:

Voltage-dependent Ca++ channels mediate Ca++ entry into excitable cells in response to membrane depolarization, and they are involved in a variety of Ca++-dependent processes, including muscle contraction, hormone or neurotransmitter release and gene expression. Calcium channels are highly diverse, multimeric complexes composed of an α 1 subunit, an intracellular β subunit, a disulfide linked $\alpha 2/\delta$ subunit and a transmembrane γ subunit. Ca++ currents are characterized on the basis of their biophysical and pharmacologic properties and include L-, N-, T-, P-, Q-, and R- types. T-type Ca++ currents are activated and inactivated more rapidly and at more negative membrane potentials than other Ca++ current types. T-type Ca++ channels enhance odor sensitivity by lowering the threshold of spike generation in olfactory receptor cells (ORCs).

Product:

Rabbit IgG, 1mg/ml in PBS with 0.02% sodium azide, 50% glycerol, pH7.2

Molecular Weight:

~ 315 kDa

Swiss-Prot:

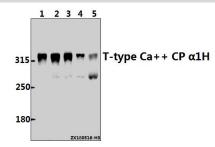
O95180

Purification&Purity:

The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific immunogen and the purity is > 95% (by SDS-PAGE).

Applications:

WB: 1:500~1:1000


Storage&Stability:

Store at $4 \,^{\circ}{\rm C}$ short term. Aliquot and store at $-20 \,^{\circ}{\rm C}$ long term. Avoid freeze-thaw cycles.

Specificity:

T-type Ca++ CP α 1H (P492) polyclonal antibody detects endogenous levels of T-type Ca++ CP α 1H protein.

DATA:

Western blot (WB) analysis of T-type Ca++ CP α 1H (P492) pAb at 1:500 dilution

Lane1:L02 whole cell lysate(40ug)

Lane2:HepG2 whole cell lysate(40ug)

Lane3:PC3 whole cell lysate(20ug)

Lane4:AML-12 whole cell lysate(40ug)

Lane5:H9C2 whole cell lysate(40ug)

Note:

For research use only, not for use in diagnostic procedure.